GEMINs: potential therapeutic targets for spinal muscular atrophy?
نویسندگان
چکیده
The motor neuron degenerative disease spinal muscular atrophy (SMA) remains one of the most frequently inherited causes of infant mortality. Afflicted patients loose the survival motor neuron 1 (SMN1) gene but retain one or more copies of SMN2, a homolog that is incorrectly spliced. Primary treatment strategies for SMA aim at boosting SMN protein levels, which are insufficient in patients. SMN is known to partner with a set of diverse proteins collectively known as GEMINs to form a macromolecular complex. The SMN-GEMINs complex is indispensible for chaperoning the assembly of small nuclear ribonucleoproteins (snRNPs), which are key for pre-mRNA splicing. Pharmaceutics that alleviate the neuromuscular phenotype by restoring the fundamental function of SMN without augmenting its levels are also crucial in the development of an effective treatment. Their use as an adjunct therapy is predicted to enhance benefit to patients. Inspired by the surprising discovery revealing a premier role for GEMINs in snRNP biogenesis together with in vivo studies documenting their requirement for the correct function of the motor system, this review speculates on whether GEMINs constitute valid targets for SMA therapeutic development.
منابع مشابه
Immunoexpression of gemins 2 and 4 in the rat spinal cord. Is the SMN complex a new target in investigations of sporadic amyotrophic lateral sclerosis pathogenesis?
Sporadic amyotrophic lateral sclerosis (sALS) is a neurodegenerative disease leading to degeneration and loss of motoneurons in different structures of the nervous system. Although aetiology of the disease is unknown, it is hypothesized that the survival motor neuron (SMN) protein which protects motoneurons in spinal muscular atrophy, may play a similar role in ALS. Relatively little is known a...
متن کاملGenetic Interactions between the Members of the SMN-Gemins Complex in Drosophila
The SMN-Gemins complex is composed of Gemins 2-8, Unrip and the survival motor neuron (SMN) protein. Limiting levels of SMN result in the neuromuscular disorder, spinal muscular atrophy (SMA), which is presently untreatable. The most-documented function of the SMN-Gemins complex concerns the assembly of spliceosomal small nuclear ribonucleoproteins (snRNPs). Despite multiple genetic studies, th...
متن کاملSpinal Muscular Atrophy: From Defective Chaperoning of snRNP Assembly to Neuromuscular Dysfunction
Spinal Muscular Atrophy (SMA) is a neuromuscular disorder that results from decreased levels of the survival motor neuron (SMN) protein. SMN is part of a multiprotein complex that also includes Gemins 2-8 and Unrip. The SMN-Gemins complex cooperates with the protein arginine methyltransferase 5 (PRMT5) complex, whose constituents include WD45, PRMT5 and pICln. Both complexes function as molecul...
متن کاملSurvival motor neuron: motor neuron insurance for a whole lifespan?
The SMN (survival motor neuron) gene plays an important role in ontogenesis and its dysfunction leads to immatu-rity of skeletal muscles and motor neurons in the spinal cord. As a result of SMN mutations the affected cells die and clinical symptoms of spinal muscular atrophy (SMA) develop. Physiologically, SMN together with gemins is part of a multiprotein complex of particular importance to mo...
متن کاملGemins modulate the expression and activity of the SMN complex.
Reduction in the expression of the survival of motor neurons (SMN) protein results in spinal muscular atrophy (SMA), a common motor neuron degenerative disease. SMN is part of a large macromolecular complex (the SMN complex) that includes at least six additional proteins called Gemins (Gemin2-7). The SMN complex is expressed in all cells and is present throughout the cytoplasm and in the nucleu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2014